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HIGH‐SPEED SORTING OF GRAINS BY 
COLOR AND SURFACE TEXTURE

T. Pearson

ABSTRACT. A high‐speed, low‐cost, image‐based sorting device was developed to detect and separate grains with different
colors/textures. The device directly combines a complementary metal‐oxide‐semiconductor (CMOS) color image sensor with
a field‐programmable gate array (FPGA) that was programmed to execute image processing in real‐time without the need
for an external computer. The spatial resolution of the imaging system is approximately 16 pixels/mm. The system utilizes the
inherent parallel processing capabilities of FPGA's to inspect three separate streams of grain with a single camera/FPGA
combination. Kernels are imaged immediately after dropping off the end of a chute and are diverted by activating an air valve.
The system has a throughput rate of approximately 225 kernels/s overall, which is much higher than previously developed
image inspection systems. This throughput rate corresponds to an inspection rate of approximately 25 kg/h of wheat. Testing
of the system resulted in accuracies of 96% for separating red wheat from white wheat, 93% accuracy for separating barley
from durum, and 92% for separating brown flax from yellow flax. The sorter should find use in removing other defects found
in grain, such as scab‐damaged and bunted wheat. Parts for the system cost less than $2,000, so it may be economical to run
several systems in parallel to keep up with processing plant rates.
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utomated separation of grains based on color and
surface texture is needed by breeders, seed
foundations, and seed companies to help purify
lots. Commercial color sorters can distinguish

many defects or undesirable seeds, but they lack accuracy in
many other applications. Additionally, the cost of these
sorters is high. Commercial sorters have been shown to
separate red and white wheat with approximately 80%
accuracy after several passes through the sorter (Pasikatan
and Dowell, 2003), which may not always be accurate
enough for some breeding lines with small amounts of white
wheat. The only image processing performed by most
commercial  color sorters is thresholding and pixel counting.
Consequently, for many products, certain defects are difficult
to detect and remove. Shriveled and Fusarium head blight
(scab‐damaged) wheat kernels are a case in point. The
efficacy of using a limited spatial resolution (~0.5 mm)
commercial  dual‐band (one near infrared (NIR), one visible)
sorter for removal of scab‐damaged kernels has been studied
(Delwiche et al., 2005). Only 50% of the scab‐damaged
kernels were removed, while about 5% of the undamaged
kernels were also rejected.

Pearson (2009) developed an image‐based sorter for
separating red and white wheat that was highly accurate
(>95%), but had a throughput of only ~2 kg/h. This system
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utilized a personal computer to perform image processing
and classification. Although the throughput of this machine
is somewhat low, this device has found widespread use with
many wheat breeders throughout the country. Nevertheless,
requests for higher throughput with comparable accuracy
have been repeated by breeders and foundation seed
programs so that later breeding lines that might comprise
several bushels of seed can be accurately sorted.

Field‐programmable  gate arrays (FPGA) are
semiconductor devices comprised of interconnected logic
elements (comprising a 4‐input lookup table and a flip‐flop),
memory, and digital signal processing hardware on a single
chip. The configuration of the interconnections, and
therefore the function of the device, is determined by
compiled programs loaded onto the chip. FPGA's are
currently used in a large variety of applications where low
cost and high data throughput rates are required, such as
digital cameras, cell phones, speech recognition, and image
processing (Maxfield, 2004). The advantages of FPGA's over
micro‐controllers  and personal computers for image
processing functions are that they can perform many
computations in parallel and that they execute all commands
in hardware, making them ideal for real‐time systems.
Additionally, FPGA's are able to perform computations on
as they are transferred to the device and before the complete
image has been loaded, reducing delay in classification.

Pearson (2009) developed a FPGA/image sensor
combination and implemented a sorting system for grains.
That system used three FPGA/image sensors placed around
the perimeter of grain falling off the end of a chute so that the
entire surface of the grain could be inspected. While this
system had a throughput rate of 75 kernels/s, it was
hypothesized that a similar system could be built that took
advantage of an FPGA's ability to perform parallel
processing and could inspect more than one stream of grain
at a time with a single FPGA/image sensor combination. The
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purpose of this research was to develop a multichannel sorter
that used one FPGA/image sensor to inspect three channels
(chutes) of grain, improve on the previous systems' accuracy
for sorting red and white wheat, and test it on other types of
seeds. The system was tested for its ability to separate red
wheat from white wheat, barley from durum, and brown from
yellow flax seeds.

MATERIALS AND METHODS
IMAGE SENSOR – FPGA DESIGN

The image sensor/FPGA combination used for this device
is very similar to that described in Pearson (2009), so only a
brief overview will be given here. A CMOS image sensor
(KAC‐9628, Eastman Kodak Company, Rochester, N.Y.)
was mounted onto a custom‐designed printed circuit board
with all support electronics for the image sensor
recommended by the manufacturer. The FPGA, with its
necessary support electronics, was purchased pre‐mounted
onto its own circuit board (Pluto‐III, KNJN‐LLC‐
fpga4fun.com, Fremont, Calif.). This FPGA board has more
logic elements and memory than the one used in Pearson
(2009). The free Altera Quartus II web edition version 7.2
was used to develop and compile programs for the FPGA. A
C‐mount lens mounting block was fabricated out of delrin
and fastened to the image circuit board. A 25‐mm lens
(M2514‐MP, Computar, Japan) was used.

The FPGA circuit board has a 25‐MHz clock that was
wired to the main clock input of the image sensor, so the pixel
clock rate was 12.5 MHz. One image frame was limited to
just two lines in the center of the image sensor. This
essentially made the two‐dimensional sensor work as a color
linescan sensor. The image sensor used has either a red,
green, or blue color filter over every pixel arranged in a Bayer
pattern, typical of most two‐dimensional image sensors. One

line consists of red and green pixels and the next line consists
of green and blue pixels. Most two‐dimensional color images
are constructed by interpolating the colored pixels so that
each pixel would appear to have a red, green, and blue value.
However, this was not done in this application in order to
reduce computations. Thus, the red and blue image data was
one‐quarter the full scale pixel resolution and the green
image data was one‐half the full scale raw pixel resolution.
The analog image gain was set to a level of 128, which is the
middle of the amplification range on this sensor. The
12.5‐MHz clock rate produced images of grain kernels of the
correct aspect ratio when the imaged lines were reconstructed
to form a two‐dimensional image.

SORTING SYSTEM PROTOTYPE

Figure 1 displays an image of the complete sorting
machine prototype while figure 2 displays detail of the
camera, chute, eject nozzle, and LED illumination. Kernels
were fed in a single layer by a vibratory feeder (F‐TO‐C,
FMC‐Syntron, Homer City, Pa.) with a flat‐bottom trough,
40 mm wide that was supplied with the feeder. The kernels
dropped off the end of the feeder onto a chute with three
parallel “vee” grooves. The chute was fabricated from
aluminum bar stock with the three grooves machined into it.
Each groove was was 8 mm deep and spaced 12.7 mm apart.
These grooves were close enough that kernels would
singulate on them without overflowing or spilling off.

Image capture from the separate vee channels was
accomplished by defining three regions of interest that
corresponded with each vee groove. While the image sensor
constantly scanned and output images, triggering and image
analysis from the three regions of interest were processed
separately on the FPGA using three different blocks of logic.
While the three channels were captured by one image sensor

Image sensor/FPGA
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Figure 1. Photo of sorting system showing the cameras, illumination, eject nozzle, chute, and feeder.
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Figure 2. Schematic of sorter system showing detail of the arrangement
of camera, illumination, eject nozzle, and chute.

and processed on FPGA, the image data for each channel was
processed independently in three separate regions within the
FPGA. This allowed for independent image capture and
processing of the kernels coming off the three different vee
grooves.

For diverting product, the FPGA outputs a digital signal
which triggers one of three solid state relays (D0061B,
Crydom, San Diego, Calif.) and fires an electronic,
solenoid‐activated  air valve (36A‐AAA‐JDBA‐1BA, Mac
Valves, Inc., Wixom, Mich.). The air valve sends a burst of
air for 3 milliseconds to an air nozzle that diverts the seed into
the appropriate channel. The air nozzle was constructed from
an aluminum block with three 1‐ × 10‐mm slots spaced
12.5 mm apart machined into it. Air from the solenoid valve
was plumed into the aluminum block and the nozzle
positioned so one slot was opposite of each vee groove in the
feeding chute. Any one, two, or three air nozzles could be
activated without effecting grain kernels in an adjacent vee
groove.

Illumination for each channel was provided by high
power, white light emitting diodes (LED) (W42180U, Seoul
Semiconductor, Korea). One LED was placed directly above
each of the three channels, and one extra was placed on each
end so that the center channel would not receive more light
from adjacent LED's than the two edge channels. Each LED
was coupled to a spot lens (OP005, Dialight, Farmingdale,
N.J.) that focused the light onto a spot approximately 5 mm
in diameter. A custom circuit board was fabricated to mount
and power the LED's. The LED circuit board included a
0.5‐mm diameter hole (same diameter as the LED) directly
under each LED. A copper round of the same diameter was
pressed into each hole to help conduct heat away from the
LED. An aluminum heat exchanger was then mounted on the
opposite side of the circuit board from the LED's. Finally, air
was forced over the heat exchanger fins by means of a small
fan (#BM5125‐04W‐B50‐L00, NMB Technologies Corp.,
Chatsworth, Calif.). These LEDs had a maximum forward
current of 1,000 mA, which was provided by a constant
current source LED driver (TLD1040‐36‐C1050, Triad
Magnetics, Corona, Calif.). All five LEDs were powered in
series by a single current source so that they all received
exactly the same amount of current. This helped to keep their
light emission intensities uniform across all three channels.

Light output from each LED was measured by placing a
2.0 optical density neutral density filter (NT63‐413, Edmund
Optics, Barrington, N.J.) between the each LED lens and a
small light meter (#615, B&K Precision, Yorba Linda,
Calif.). Light output from the five LED's averaged 154 lm
with a range of 150 to 162, a spread of 7.7% of the average.

The lighting was further equalized by dropping a
laboratory grade 3.2‐mm diameter white Teflon ball
(9660K13, McMaster‐Carr, Chicago, Ill.) down each channel
30 times. The FPGA would process the image of the ball and
export the maximum and minimum green intensity values to
a computer. The average maximum and minimum values for
all balls dropped down each channel and was then computed
and compared to the center channel. All of the minimum
values of the ball region of the image were the same (33).
While average maximums for all channels were within 7% of
each other (ranging from 215 to 237), lookup tables were
created for the two side channels so that their maximum and
minimum intensities would be the same as the center
channel. All further processing of kernels on the side
channels was then performed on the intensity stretched image
rather than on the raw image so that their intensity values
would be very similar to intensity values from the center
channel.

SIGNAL PROCESSING

Pearson et al. (2008) showed that the standard deviation
of pixel intensities; the average pixel intensities of the red,
green, and blue channels; and the number of pixels below a
set threshold are good features for distinguishing red wheat
from white wheat when using color images. Red wheat tends
to have higher standard deviations of pixel intensities as they
tend to have darker areas accompanied by lighter, almost
white, areas at the beard end. Also, weathering tends to create
light areas on red wheat kernels. The combination of darker
red and lighter white areas drives the pixel intensity standard
deviation higher than more consistently colored white
kernels. Red wheat also has higher counts of blue pixels with
dark intensity levels. This is due to the red kernel pigment
absorbing blue light.

The FPGA was programmed to compute the variance of
the red pixel intensities, the average pixel intensities of the
red, green, and blue channels, and the cumulative histograms
of the red, green, and blue color channels. Additionally, the
sorter was programmed to compute a histogram of the slopes
of the green pixels with a two‐pixel gap in the horizontal
direction only. This histogram, along with the variance of
pixel intensities, can be used to characterize the texture of
some kernels. All four of the computed histograms contained
16 bins. The color histograms spanned the range between
intensity levels 16 through 255 while the slope histogram
spanned from 0 to 30. Only absolute values of slope were
used. The variance of the red pixels was computed by keeping
a running tally of the sum and sum squared of the red pixel
intensities above a threshold level of 15, which segmented
the kernel from the background. After image capture was
completed,  the variance was computed using the pixel
intensity average and sum squared.

Classification of kernels was based on a subset of three of
the features using linear discriminant analysis. During
training, the FPGA stored all computed image features in
memory for each kernel in the center channel. After each
kernel passed the camera, the data was exported out through
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a serial port created on the FPGA to a PC where it was saved.
The computer then processed the data to select the best three
features and develop a discriminant function used to classify
kernels, per Pearson et al. (2008). After the three features and
discriminant function were computed, their parameters were
written to a text file that the FPGA compiler read while
compiling a new FPGA program for a particular application.
After compilation, the new program was loaded onto the
FPGA's non‐volatile memory that was read during power up.
So, for sorting, no external computer was needed to be
connected to the FPGA/image sensor system.

A 16‐position rotary DIP switch on the FPGA was used to
adjust the threshold probability (and therefore move the
decision boundary) for classifying kernels. This enabled a
user to adjust the sensitivity of the system to bias it toward
more aggressive or conservative diversion of desired
product.

SAMPLE SOURCE AND SORTER TESTING
The red and white wheat were of the Jagger and Betty

varieties, respectively (shown in fig. 3). Barley was of the
“Tradition” variety supplied from the North Dakota Seed
Foundation. The durum was collected from a grain elevator
in Northern Minnesota and was of unknown variety. It
probably consisted of a mixture of several varieties, and some
were vitreous while others were a more chalky yellow color.
Representative  samples of barley and durum are shown in
figure 4. The brown and yellow flax seed (shown in fig. 5)
were also of unknown varieties but originated in North
Dakota.

The sorter was trained using pure samples of the two types
of seeds desired to be sorted using the procedure outlined in
the previous section. Each training session took about 10 min.
The sorter was trained to separate white wheat from red

Figure 3. White wheat (left) and red wheat (right) used in this study.

Figure 4. Barley (left) and durum (right) used in this study.

Figure 5. Brown flax (left) and yellow flax (right) used in this study.

wheat, barley from durum, and brown from yellow flax.
Approximately 1800 g of red wheat, durum, or yellow flax
were added to 200 g of white wheat, barley, and brown flax,
respectively, to form mixtures of the seeds for sorter testing.
After training the sorter for each application, the seeds were
sorted and the accuracy of the sorted lots estimated by
visually inspecting 50 g sub‐samples of the accept and reject
streams. Each mixture was sorted and inspected 10 times
every two days for 12 days to determine if accuracy degraded
over time. However, the sorter was trained for each
application only at the beginning of the 12‐day test.

RESULTS
All results are tabulated in table 1 and discussed separately

in subsections for each commodity studied.

RED AND WHITE WHEAT

The average accuracy achieved by the system was 98.6%
for red wheat and 93% for white wheat during the 12‐day
period. Analysis of variance did not find any significant
(p = 0.05) change in accuracy over time during the 12‐day
testing period (fig. 6). These accuracies are more than 10%
to 20% above what can be accomplished after passing wheat
through a commercial color sorter several times (Pasikatan
and Dowell, 2003). Additionally, these accuracies are
comparable to what has been accomplished using three
similar features extracted from color images using a
traditional camera and personal computer to do the image
processing (Pearson et al., 2008). However, this FPGA
system has 10 times greater product throughput and is likely
to be more physically robust, since a PC is not required during
sorting (and only temporarily required for training). Note that
in figure 6, there is some fluctuation in accuracy from day to
day. Some of the fluctuation might be contributed by human
error in visually distinguishing red and white kernels. It
appears that a small rise in red wheat accuracy coincides with
a small drop for white wheat, and vice‐versa. The standard
deviations in accuracy for all tests were 0.75% for both red
and white wheat. All of the average accuracies for each day
are within two standard deviations of each other.

The feature selection process during training selected the
average green, average red, and the number of pixels
corresponding to a moderately high slope of 25. Red wheat
had lower values of average green and red, and higher values
of pixels having a moderate slope. This is likely due to
transitions from darker red regions to lighter regions on the
kernel where the beard is.
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Table 1. Summary of sorting result tests for the 12 day test period.

Grains sorted Specific Grain
Average Accuracy over

12‐Day Test (%)
Standard Deviation over

12‐Day Test (%) Image Features Used

Red vs. white wheat Red wheat 98.6 0.70 Average green, average red, number of
pixels corresponding to a slope of 25

White wheat 93.0 0.65

Barley vs. durum Barley 93.0 0.55 Average green, count of blue pixels
below intensity of 60 and the number of

pixels having a slope of 10

Durum 93.0 0.60

Yellow vs. brown flax Yellow flax 94.0 0.50 Average red, green, and blue values

Brown flax 90.0 0.40

BARLEY AND DURUM
Average accuracy for both barley and durum was 93%

during the 12‐day testing period (standard deviation = 0.60
for durum and 0.55 for barley). The accuracy of
distinguishing barley and durum was overall about 3% less
than for red and white wheat. However, the color difference,
surface texture, and shape of the kernels were somewhat
easier for humans to distinguish than red and white wheat.
Durum was generally darker and smaller than barley, but
kernels that were mottled had larger regions that were lighter
than barley kernels. Still, humans can distinguish these
kernels based on shape and surface texture. Majumdar and
Jayas (2000a) developed image processing and classification
schemes using color information only to discriminate durum
from barley. This study was performed with digital images of
stationary seeds and resulting accuracy was 92% for durum
and 93% for barley. Even though this study did include a wide
variety of samples, their results are very close to what is
accomplished here where seeds are imaged while in freefall.
Later, Majumdar and Jayas (2000b) combined color
information with morphological features from digital images
to improve accuracies for distinguishing durum from barley
to over 99%. Incorporating kernel morphological features
into the FPGA program will be the focus of future research.

The training process selected the average green, a
cumulative histogram bin from the blue pixels at an intensity
of 60, and the number of pixels having a low slope of 10 as
features for classification. Durum had lower average green
values, higher counts of darker blue pixels below a level of
60, and lower counts of pixels with a low slope. The rough

texture of the barley likely caused the counts of pixels with
a low slope to be higher than durum. Durum kernels that were
mottled had higher counts of pixels with moderate slopes but
the darker and lighter regions of these kernels are consistent
and have many adjacent green pixels with zero or small
slopes between them.

The average accuracy values for durum and barley did not
fluctuate as much as red and white wheat did (fig. 7), and this
is reflected in a slightly smaller overall standard deviation in
accuracy values for all of the tests. The lower fluctuation in
accuracy values from day to day may be due to less human
error in distinguishing these kernels.

BROWN AND YELLOW FLAX

Average accuracy was 90% for brown flax and 94% for
yellow flax during the 12‐day period. The standard
deviations for yellow and brown flax were 0.5 and 0.4,
respectively, for all tests over the 12‐day period. Even though
yellow and brown flax seed was the easiest to distinguish with
the human eye, the accuracy for these seeds was the lowest
of the three sets studied. The small size of flax probably
contributed to this. Also, the shape of flax seeds was
problematic as they are very thin and sometimes only their
edge is presented to the camera. This tends to make yellow
flax seeds appear darker. Finally, there may also be more
errors made when flax seeds are rejected due to their small
size.

The features selected to discriminate brown and yellow
flax were the average red, green, and blue values. The flax
seeds tend to have very consistent color over their entire
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Figure 6. Average accuracies for each day of testing with the sorting system running red and white hard winter wheat.
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Figure 7. Average sorting accuracies for each day of testing of the sorting system running barley and durum.

surface and the brown and yellow seeds are both very smooth
and of the same surface texture. The average values of red,
green, and blue pixel values are not as affected by the size of
the seed, which helps mitigate effects of seed orientation
when imaged. However, the seed orientation may affect how
light is reflected from it, which has an effect on the overall
lightness in the resulting image. More lights than one row of
LED's may help reduce the effect of seed orientation on flax
seeds.

Like the sorting tests with barley and durum, accuracy of
flax sorting did not fluctuate as much as the red and white
wheat did during the 12‐day testing period (fig. 8). The
standard deviations were similar to barley and durum, and no
average for each day was separated by more than two
standard deviations from any other point. As shown in
figure 8, there does not appear to be a downward trend in
sorting accuracies over the 12‐day testing period.

DISCUSSION
GENERAL DISCUSSION

The combined throughput of 225 kernels/s approximates
that of high‐speed commercial color sorters and is
substantially higher than what has been developed so far

using traditional cameras connected to personal computers
that perform the image processing (Pearson et al., 2008).
Traditional cameras may output images of similar resolution
at rates of 60 frames per second, but inspection rates are about
half (30 kernels/s) due to kernel feeding limitations. The
image sensor/FPGA combination has much less latency in
data transmission than a camera connected to a PC does, so
the kernels can be spaced much closer to one another. Parts
costs for this three channel FPG‐based system are actually
slightly less than the PC‐based system (Pearson et al., 2008)
and are about $2000.

Higher accuracy for some seeds might be achieved if the
FPGA were programmed to extract shape features such as
length, width, length/width, perimeter, and/or Fourier
descriptors (Gahzanfari et al., 1997; Majumdar and Jayas,
2000b). Better color accuracy might be achieved if the FPGA
were programmed to change the color coordinates to hue,
saturation, and lightness where hue and saturation define
color without effects of overall brightness. This will be the
focus of future research. The FPGA used in this study has
4,608 logic elements, and approximately 3,000 are used to
compute the features that are currently extracted. Other
FPGA's with many more logic elements are readily available.
Nevertheless, the sorter accuracies for the three applications
presented here are more than adequate for the device to be a
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Figure 8. Average sorting accuracies for each day of testing of the sorting system running brown and yellow flax seed.
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cost effective and useful tool to seed breeders and seed
suppliers. Cleaner seed will also help farmers to produce a
more pure crop, which could help in international trade.

While the training process only takes approximately
10 min, it appears that it will not need to be performed very
often for a given application. The lighting from the LED is
very stable and the observed accuracy over 12‐day periods
showed no sign of declining over time. While dust covering
the camera lens and LED's was not observed to be an issue
during the testing, daily cleaning of the lenses may be needed
if the machine is used constantly throughout the day. This is
required on commercial sorters as well. The light intensity
emitted by the LED's does gradually decay over several
months' time, so the sorter would have to be eventually
re‐trained to account for lighting changes. It is more likely
that the sorter would need to be re‐trained more often to
accommodate  seed being supplied from different regions and
growing conditions.

CONCLUSION
Simple image processing and pattern recognition can be

executed in hardware on FPGA chips directly linked to image
sensors. This combination makes an economical system for
the inspection of agricultural products, which until now has
not been reported. The throughput of this three‐channel
system, ~25 kg/h wheat (about 225 kernels/s) is
unprecedented for an imaging based system. The high
throughput is made possible by utilizing parallel processing
of three separate channels of wheat on one image
sensor/FPGA device. Sorting accuracy is comparable to what
has been accomplished so far using traditional color cameras,
with image processing performed on personal computers.
Training of the system with small amounts of two classes of
seeds can be accomplished in about ten minutes. It appears
that the sorter can operate with consistent classification
results for several days without the need to re‐train it. This
system was tested on a range of seed sizes from flax seetd to

large barley seeds. It may be possible to inspect larger
products such as corn and tree nuts with modifications to the
feeding system. Parts for the system are lower in cost and
physically more robust than systems using personal
computers, so they might be more suitable for processing
plant environments.
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